
International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 547
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Review of the Present State-of-the-Art of
Dynamic Test Reconfiguration of Composite Web

Services
Sirisha K L S1, Dr. M. Chandra Mohan2 , V. Santosh Kumar3

Abstract— In the wake of Service Oriented Architecture (SOA) and its applications that integrated services provided by different business-
es, reliability of services play a vital role in the success of those businesses. Testing is the widely accepted approach used to find reliability
of services. Testing web services that are composed to form SOA applications is non-trivial and hard to achieve. Web services with BPEL
workflow drive most of the businesses that affect all stakeholders. Building comprehensive test strategies for cohesiveness of underlying
components and loosely coupled nature of integrated heterogeneous pieces of software is very challenging. Moreover business processes
tend to change that makes the job of testing much more complex. Many researchers contributed towards testing of web services. In this pa-
per we review the present state-of-the-art of web service composition methods, testing web services, automatic test case generating and
automatic test case reconfiguration. This paper provides insights found in the literature in terms of test methodologies, tools and techniques
used for testing web services and web service compositions.

Index Terms— Web services, distributed computing , composite web services, testing , test reconfiguration
 —————————— ——————————

1 INTRODUCTION
Service based applications became very popular and they pro-
vide certain services to end users. These applications are made
up of many similar services (businesses) that seamlessly work
together so as to provide quality services to users. Such appli-
cations are based on Service Oriented Architecture (SOA)
which is distributed in nature. Service oriented applications
include applications in banking sector, reservations, e-
commerce to mention few. These applications deliver promis-
ing services that are essential to end users. Though these ap-
plications are very complex, the complexity is transparent to
end users. Users enjoy services even without having
knowledge on the underlying technologies. SOA based appli-
cations need to integrate many related businesses. Supply
Chain Management (SCM), ATM network are best examples
for that.
Reliability of service oriented applications play vital role to the
success of associated businesses. Testing is one of the ap-
proaches to find reliability of service oriented applications.
The present testing approaches are not adequate to provide
the required level of quality assurance in service oriented ap-
plications. Stated differently, the testing of service oriented
applications needs further research as they are very complex.
SOA applications are exposed as atomic web services or com-
posite web services. Atomic web service has a single interface
through which other applications can interact.

• Sirisha K L S is currently working in Keshav Memorial Institute of Technolo-

gy as an Assistant Professor in the Department of Computer Science and En-
gineering. E-mail: klssirisha@gmail.com

• Dr. M. Chandra Mohan is currently working in JNTUH as a Professor in the
Department of Computer Science and Engineering. E-mail:
c_miryala@jntuh.ac.in

• V.Santosh Kumar currently working in Sreyas Institute of Engineering and
Technology as an Associate Professor in the Department of Computer Science
and Engineering). E-mail: vennu.santoshkumar@gmail.com

The composite web services on the other hand are made up of
multiple web services seamlessly integrated into a business

process. Such application may include many services provid-
ed by third parties. Therefore testing such applications is non
trivial and needs careful selection of suitable testing tech-
niques. There are many reasons for difficulty of testing such
applications. First, the services are from different providers
and deployed in different servers. Second, they are probably
dynamically composed at runtime. Third, the services or the
underlying components may be subjected to changes without
notice. Fourth, the provider of web service may not have con-
trol over the components.

Due to the dynamic nature of the web services, it is essential to
have an ongoing process for runtime testing from time to time
to ensure reliability. As said earlier it is complex process and
needs regular testing as there might be changes to service
composition that necessitates the updating of test suits, isola-
tion of composition changes, and notification of testers so as to
reconfigure test cases in order to continue testing reliability of
those web services. Having understood the full spectrum of
the modern service oriented applications, the need for their
reliability, in this paper, we throw light on the present state-of-
the-art of testing composite web services and the test case re-
configuration to adapt changes. The remainder of the paper is
structured into different sections that review the available lit-
erature to have useful insights. Our endeavour is to unearth
the existing research outcomes and provide research gaps that
can help in further research in this area.

2 Changes in Composite Web Services that Affect Test Sys-
tem
While performing reliability testing of composite web services,
the test system needs to know whether there are interface
changes in the underlying web services and the kind of change
that has been made in order to regenerate test cases. King and
Ganti [2] investigated different changes that may occur to web

IJSER

http://www.ijser.org/
mailto:klssirisha@gmail.com
mailto:c_miryala@jntuh.ac.in

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 548
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

services and categorized them into three types as shown in
Table 1.

CHANGE CATEGORY DESCRIPTION
Additive change It is the change caused due

to introduction of new com-
ponent into an existing SOA
application.

Reductive change It is the change caused due
to removal of a component
from SOA application.

Mutative change It is the change caused due
to transformation of existing
component while preserving
its functionality to a greater
extend. In other words, it is
caused due to changes in one
of the components.

Table 1 – Different change types in service composition

3. Runtime SOA Testing
Testing SOA applications need live approaches so as to test the
reliability from time to time. Bai et al. [4] studied the different
runtime environments for SOA applications. They proposed
adaptive testing framework that makes use of continuous heu-
ristics to improve testing strategies. Their work is based on the
broker architecture explored in [6] and [5]. Their work is an
extension to the UDDI test strategy. They used a web service
as feedback unit in order to get response while testing and
make other consecutive decisions based on the feedback. The
Bai et al. improved their work in [7] using distributed test
agents in order to control and coordinate activities pertaining
to testing. Their work was the first attempt to address issues
related dynamic testing of web services. However, their work
did not focus on the service compositions. Brenner et al. [8]
also investigated into web service testing strategies in similar
fashion but focused more on the runtime testing of third party
services. They opined that runtime contract testing is one of
the strategies to test web services. They listed out different
kinds of runtime strategies for testing.

4. Service Composition Testing
Service composition is dynamic and may change in future.
This is not visible to the users and web services do not disclose
such information. It is impractical to run black box testing on
such web services. It is essential to have a look into the inter-
nal logic in order to test a functionality of web service. There
are tools that came into existing to have service composition
testing as explored in [10] and [9]. However, Bucchiarone et al.
[11] opined that these tools and present techniques used for
service composition testing are not adequate to handle com-
plex operations that need to address composite data types.
Zheng and Yan [41] explored web service composition issues
and proposed an algorithm for syntactic matching of web ser-
vices that are based on planning graph model which elimi-
nates duplicates.
Lallali et al. [42] explored on web service composition prob-

lems. They proposed automatic timed test case generation for
achieving web services composition into a BPEL process.
Zheng et al. [43] proposed a recommender system that can
provide recommendations to support selection of web services
while composing services. Chandra sekaran et al. [44] pro-
posed a tool known as Service Composition and Execution
Tool (SCET) composing web services and testing them. They
used Web Service Flow Language (WSFL) based specifications
to achieve this. Hausmann et al. [45] proposed a model-based
discovery of web services formal software models and graph
transformations.
Tsai et al. [47] explored consumer centric composition of web
services. This is collaboration oriented approach in which SOA
based web services are identified in consumer-centric fashion.
Platzer and Dustdar [49] explored semantic web services and
proposed a method for discovering web services. They built a
tool known as vector space search engine for this purpose
which could browse existing repositories for discovery.

5. Automatic Test Case Generation for Web Service
In case of SOA applications that are made up of web services,
it is essential to know interface specification that can be ob-
tained from Web Services Description Language (WSDL). The
WSDL based test data generation was explored in [13] and
[12]. However, other approaches and specifications in other
languages are also available for effective test case generation.
Bai et al. [27] explored automatic test case generation ap-
proaches based on WSDL. Since WSDL provides useful infor-
mation on web service and its underlying operations, return
types and arguments they focused on WSDL based test case
generation. They built Document Object Model (DOM) from
WSDL before using it for test case generation. Wang et al. [28]
proposed a framework for generating test cases based on on-
tologies. Their approach was model-driven. They made use of
semantic specifications built on OWL-S. They also used Petri
nets for achieving model-driven test case generation.
Siblini and Mansour [29] proposed a new method known as
mutation analysis for testing web services. Their method uses
WSDL in order to generate many mutant web service interfac-
es that are used to generate test cases automatically. Tsai et al.
[30] proposed a method that extends WSDL to generate test
cases with high coverage. They used four kinds of extensions
known as concurrent sequence specifications, hierarchical
functional description, invocation sequence, and input-output
dependency. Tsai et al. [31] proposed an XML based object
oriented framework for automatic test case generation. It con-
verts WSDL specifications into different scenarios from which
test cases are captured and generated. However, they ap-
proach focused on integration testing and module testing is
not given importance.
Sneed and Huang [32] proposed a tool for testing web ser-
vices. The tool was named WSDL Test which is used to gener-
ate and validate test data. Thus it can help in accomplishing
the task. The tool is finding with simple WSDL files but does
not give guaranteed performance with very complex WSDLs.
Heckel and Lohmann [33] proposed a method known as con-
tract-based web service testing which exploits matching of
service descriptions of provider and requirements of consum-
er and visualizes contracts. Then the operational interpretation

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 549
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

of rules will help the method to generate test cases.
Bai et al. [34] proposed ontology based web services testing
method which makes use of a test ontology model which rep-
resents test related concepts and their relationships to help in
test case generation. The method also has provision for con-
sistency checking and generates less number of test cases. Zhu
[35] proposed a framework for testing web services that are in
SOA applications. In [36] perturbation based testing was pro-
posed. Actually XML messages are modified and thus test cas-
es are explored and generated. This model proved to be effi-
cient but lacks in reconfiguration abilities. Chou and Guo [37]
proposed control flow analysis based testing of web services
that provide efficient and accurate means for testing besides
providing high test coverage. However they do not generate
test cases automatically.
Al-Masri and Mahmoud [38] proposed a tool for searching
web services over Internet. Web Service Crawler Engine
(WSCE) proposed by them generates metadata information
pertaining to deployed web services. Morales et al. [39] ex-
plored passive testing of web services with timed extended
invariants that represent time and data constraints. The meth-
od analyzes execution traces for finding formal extended in-
variants. Brenner et al. [40] performed runtime analysis based
testing of web services provided by third parties. They could
identify different types of tests that are possible based on the
runtime analysis.
Conroy et al. [48] proposed an approach to generate test cases
automatically based on the GUI of web service clients. This
exploits visualization and accessibility mechanisms to gener-
ate unit test cases. Drag and drop and point and click opera-
tions were used as basis to identify test case requirements.

6. Testing Web Services
Many researchers contributed to the testing strategies of web
services. Zhu et al. [3] proposed a framework for collaborative
testing of web services. The collaborative testing web services
are provided by third parties. They are discovered and used at
runtime using ontology of software testing known as STOWS.
Test brokers are used to realize the runtime composition of test
services. Ontology is used to represent the services available
and the relationship among them. Bultan et al. [14] focused on
composite web services and the tracking and analyzing of
conversations among such web services. They could identify
the differences in synchronous and asynchronous conversa-
tion behaviours. They could gain knowledge of that for both
bottom-up and top-down web service specifications.
Lin et al. [15] threw light on application of safe regression test-
ing on web services built in Java platform. They worked on the
white-box testing methods for Java web services using Apache
Axis toolkit. Belli and Linschulte [17] proposed an event-based
approach for testing web services that contain specific func-
tionality. They made use of sequence graphs and achieve fault
management. Tsai et al. [18] focused on group testing of web
services using voting algorithm. They used multi-dimensional
test data besides clustering them for effective testing of web
services. Neisse et al. [19] explored the bandwidth consump-
tion of web services so as to find their feasibility in different
conditions. Ciupa et al. [20] focused on a tool named ARTOO
fro adaptive testing of applications built using Object Oriented

(OO) languages. Chen et al. [21] explored adaptive random
testing as test selection strategy based on runtime heuristics.
Testing non-testable applications [22], testing semantic web
services [23], specification based testing of web services that
are semantic in nature [24], test case prioritization based on
quota [25] and ontology usage for representing composite web
services and help in testing [26] are other significant research-
es on web service testing.
Penetration testing was explored in [46] for securing web ser-
vices from intrusion attacks. Especially they focused on the
testing of SQL injection attacks into web services by using in-
terface monitoring and enhancing attack signatures. They ex-
plored SOAP based web services to detect injection vulnerabil-
ities in web services. Yu et al. [50] explored Testing as a Service
(TaaS) that runs in cloud for providing testing capabilities to
cloud users. This could help could users to have consistent test
platform without investing time and money on proprietary
testing mechanisms. Kavalli et al. [51] proposed a framework
named WebMov for testing composite web services. They em-
ployed passive testing techniques to know the robustness and
conformance of composite web services. They validated their
framework with travel reservation case study.
Location based web services and prioritization of test cases
[52], runtime behaviour analysis for conversational web ser-
vices [53], TGSE tool for testing composite web services [54], a
framework for scalable web services [55], investigation of bro-
ker role in web service discovery [56], JOpera for testing web
services in Agile methodology [57], web services composition
based on timed modelling towards automated testing [58],
and exploration of web services presence in Internet [59] are
other researches focused on web services and the testing of
them in SOA environment.

7. Test Reconfiguration for Service Oriented Applications

Once test cases are generated for SOA applications, the recon-
figuration of the test cases is essential as there might be differ-
ent changes in services as explored in [2]. Cooray et al. [1]
proposed architecture for test system. They generated test data
based on the information available in WSDL content. Their test
system architecture includes many components such as test
manager, coordinator, WSDL tracker, WSDL resolver, test gen-
erator, database coordinator, service client, and change man-
ager. The test manager is responsible for managing entire test
process. Coordinator is responsible for coordinating other
components in the test system. Change manager is responsible
for analyzing changes in the service composition to initiate
changes for the test case reconfiguration. Test generator com-
ponent is used to generate test cases automatically. WSDL
tracker is used to ensure that WSDL is available for use. WSDL
resolver is used to decompose WSDL and gain knowledge
from that. Database controller is used to handle database re-
lated queries. Service client is the program built in Apache
Axis [16] for testing web services.
Cooray et al. [60] proposed a framework that can be used to
reconfigure test cases that have been generated when test
compositions are changed. The framework has provision for
generating test cases automatically. It makes use of the test
composition changes explored in [2] for automatic reconfigu-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 550
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

ration of test cases. However, the framework supports test
cases of operations with simple data types. It does not support
complex and composite data types in the web service opera-
tions.

8. SUMMARY
This section provides the summary of important research as
shown in Table 2. It includes the methods used, their merits
and demerits.

Table 2- Summary of important research on testing web ser-
vices
Ref Method Advantages Draw-

backs/
Limita-
tions

Re-
marks

[3] Collabora-
tive testing

Reuse of test
services

- Uses
broker
architec-
ture

[14] Conversa-
tion analy-
sis

Runtime be-
haviour is
known

- Differ-
entia-
tion of
synchro-
chro-
nous
and
asyn-
chro-
nous
calls

[15] Safe regres-
sion testing

Testing in-
ternal logic

- Tested
only
Java
web
services

[17] Event-based
testing ap-
proach

Event se-
quence
graphs help
explore

- Fault
man-
agement

[18] Group test-
ing

Voting multi-
dimensional
data and
clustering

- Voting
algo-
rithm is
used

[27] WSDL
based test
case genera-
tion

Specification
based ap-
proach

De-
penden-
cy on
WSDL

DOM is
used

[28] Ontology
based test
case genera-
tion

Good repre-
sentation of
knowledge

- OWL-S
was
used

[29] Mutation
analysis

Test accuracy Gener-
ates
many
mutated
web
service

WSDL
based
test cas-
es

interfac-
es.

[30] Extend-
ing WSDL

High test
coverage

- Four
kinds of
exten-
sions
are used

[31] XML based
OO testing
framework

Integration
testing

Module
testing
is not
suitable

Con-
verts
WSDL
specifi-
cations
into test
scenari-
os

[32] WSDLTest
tool

Generates
and validates
test data

Does
not
work for
complex
WSDLs

Uses pre
and post
condi-
tions

[33] Contract
based test-
ing

Useful for
unit testing
of web ser-
vices

Works
in simu-
lated
envi-
ronment
only

Contract
rules are
auto-
matical-
ly inter-
preted

[34] Ontology
based test-
ing

Consistency
checking and
reducing
number of
test cases

- OWL-S
is used

[36] Perturba-
tion based
testing

Efficient ap-
proach

Recon-
figura-
tion is
not
done

Sup-
ports
docu-
ment or
mes-
sage-
passing
style

[37] Control
flow analy-
sis

Efficient,
accurate and
high test
coverage

Auto-
matic
test case
genera-
tion is
not
done

SPARQL
queries
are used

[38] Web Service
Crawler
Engine
(WSCE)

Discovers
web services

Discov-
ery
process
is not
control-
lable

UDDI
business
regis-
tries are
exploit-
ed

[39] Passive test-
ing of web
services

Invariants
representing
data and
time con-
straints

Time
com-
plexity

Case
study
based
ap-
proach

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 551
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

[48] Test case
generation
from GUI

Accessibility
technologies
and visuali-
zation

Locating
distrib-
uted
GAPs is
not yet
realized

Ex-
plored
unit test
cases

[50] Testing as a
Service
(TaaS)

Testing ca-
pabilities to
cloud users

Limited
testing
services

Unit
testing
services
were
ex-
plored

[51] WebMov
tool

Testing com-
posite web
services

Evolu-
tion of
services
was not
yet ex-
plored

Passive
testing

Table 2 – Summary of important research

9. CONCLUSIONS AND FUTURE WORK
In this paper we reviewed literature on the present state-of-
the-art of web services testing. SOA applications are composed
with proprietary and third party web services. Testing such
applications is a challenging task. Different test strategies are
required that are specific to web services. The rationale behind
the difficulty lies in the fact that web services are in distribut-
ed environment and their location is not known priori and
discovered at run time. WSDL, SOAP and UDDP are to be
understood and WSDL needs to be explored to perform opera-
tions and test web services. To reiterate the fact, testing web
services is a complex job and that needs systematic approach
to ensure reliability of web services. BPEL processes are com-
posed with multiple web services and testing them is hard to
achieve. In this paper we reviewed the literature and present-
ed in this paper the insights pertaining to web services com-
position, testing web services, automatic test case generation,
and test case reconfiguration. This research can be extended
further to implement automated test case generation for com-
posite web services besides support for automatic test case
reconfiguration in adaptive fashion.

REFERENCES

[1] M. B. Cooray, J. H. Hamlyn-Harris, and R. G. Merkel,
 “Test recon- figuration for service oriented applications,”
 in Proc. IEEE Int. Conf. Utility Cloud Comput., 2011, pp.
 300–305.
[2] T. M. King and A. S. Ganti, “Migrating autonomic
 self-testing to the cloud,” in Proc. Int. Conf. Softw.
 Testing, Verification, Validation Workshops, Paris,
 France, 2010, pp. 438–443.
[3] Z. Hong and Z. Yufeng, “Collaborative testing of web
 services,” IEEE Trans. Service Comput., vol. 5, no. 1, pp.
 116–130, Jan.–Mar. 2012.

[4] X. Bai, C. Yinong, and S. Zhongkui, “Adaptive web service
 es testing,” in Proc. 31 Annu. Comput. Softw. Appl. Conf.,
 2007, pp. 233–236.
[5] X. Bai, Z. Cao, and Y. Chen, “Design of a trustworthy ser
 vice broker and dependence-based progressive group test
 ing,” Int. J. Simul. Process Modell., vol. 3, pp. 66–79, 2007.
[6] W. T. Tsai, R. Paul, Z. Cao, L. Yu, and A. Saimi, “Verifica
 tion of web services using an enhanced UDDI server,” in
 Proc. 8th Int. Workshop Object-Oriented Real-Time De
 pendable Syst., 2003, pp. 131– 138.
 [7] X. Bai, X. Dezheng, D. Guilan, T. Wei-Tek, and C. Yinong,
 “Dynamic reconfigurable testing of service-oriented archi
 tecture,” in Proc. 31st Annu. Int. Comput. Softw. Appl.
 Conf., 2007, pp. 368– 378.
[8] D. Brenner, C. Atkinson, O. Hummel, and D. Stoll, “Strat
 egies for the run-time testing of third party web service
 es,” in Proc. IEEE Int. Conf. Service-Oriented Comput.
 Appl., 2007, pp. 114–121.
[9] C. Barbara G. Ryder,Ana Milanova,David Wonnacott.
 (2004). Testing of Java Web Services for Robust
 ness. ACM, p271-280.
[10] C.-H. Liu, S.-L. Chen, and X.-Y. Li, “A WS-BPEL based
 structural testing approach for web service composi
 tions,” in Proc. IEEE Int. Symp. Service-Oriented Syst.
 Eng., 2008, pp. 135–141.
 [11] A. Bucchiarone, H. Melgratti, and F. Severoni, “Testing
 service composition,” in Proc. 8th Argentine Symp.
 Softw. Eng., Mar del Plata, Argentina, 2007, pp. 1–16.
[12] X. Bai, D. Wenli, T. Wei-Tek, and C. Yinong, “WSDL-
 based automatic test case generation for web services
 testing,” in Proc. IEEE Int. Workshop Service-Oriented
 Syst. Eng., 2005, pp. 207–212.
[13] M. Chunyan, D. Chenglie, Z. Tao, H. Fei, and C. Xiaobin,
 “WSDLbased automated test data generation for web
 service,” in Proc. Int. Conf. Comput. Sci. Softw. Eng.,
 2008, pp. 731–737.
[14] T. Bultan and Jianwen Su,Xiang Fu. (2006). Analyzing
 Conversations of Web Services. IEEE, p.20-30.
[15] F. Lin, Michael Ruth, Shengru Tu. (2006). Applying Safe
 Regression Test Selection Techniques to Java Web Servic
 es. IEEE, p1-10.
[16] S. Chan Oh, Dongwon Lee,Soundar R.T. Kumara. (2008).
 Effective Web Service Composition in Diverse and Large-
 Scale Service Networks. IEEE. 1 (1), p.20-30.
[17] Fevzi Belli, Michael Linschulte. (2008). Event-Driven
 Modeling and Testing of Web Services. IEEE, p1370-1381.
 [18] W. T Tsai, Yinong Chen, Dawei Zhang, Hai Huang.
 (2005). Voting Multi-Dimensional Data with Deviations
 for Web Services under Group Testing. IEEE, p.90-101.
[19] Ricard. (2004). Implementation and Bandwidth Con
 sumption Evaluation of SNMP to Web Services Gate
 ways. IEEE, p271-280.
[20] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “ARTOO:
 Adaptive random testing for object-oriented software,”
 in Proc. 30th Int. Conf. Softw. Eng., Leipzig, Germany,
 2008, pp. 71–80.
[21] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random
 testing,” in Proc. 9th Asian Comput. Sci. Conf., 2004, vol.
3321, pp. 320–329.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 552
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

[22] E. J. Weyuker, “On testing non-testable programs,”
 Computer J., vol. 25, pp. 465–470, 1982.
[23] M. Kluscha, Benedikt Fries , Katia Sycarac. (2009).
 OWLS-MX: A hybrid SemanticWeb service matchmaker
 for OWL-S services.Elsevier. 7 , p1-10.
[24] M. Shaban Jokhio, Gillian Dobbie and Jing Sun. (2009).
 Towards Specification Based Testing for Semantic Web
 Services. IEEE, p.20-30.
[25] S. S Hour, Lu Zhang. (2008). Quota-Constrained Test-
 Case Prioritization for Regression Testing of Service-
 Centric Systems. IEEE, p1-10.
[26] J. Nitzsche, D. Wutke, and T. vanLessen, “An ontology
 for executable business processes,” in Proc. Semantic
 Business Process Product Lifecycle Manage. in conjunct
 tion 3rd Eur. Semantic Web Conf., Innsbruck, Austria,
 2007, pp. 52–63.
[27] Xiaoying Bai, Wenli Dong. (2005). WSDL-Based Auto
 matic Test Case Generation for Web Services Test
 ing. IEEE, p1-10.
[28] Yongbo Wang, Xiaoying Bai, Juanzi Li, Ruobo Huang.
 (2007). Ontology-Based Test Case Generation for Testing
 Web Services. IEEE, p271-280.
[29] Reda Siblini, Nashat Mansour. (2005). Testing Web Ser
 vices. IEEE, p1370-1381.
[30] W. T. Tsai, Ray Paul, Yamin Wang, Chun Fan, and Dong
 Wang. (2002). Extending WSDL to Facilitate Web Servic
 es Testing. IEEE, p.20-30.
[31] W. T. Tsai, Ray Paul, Weiwei Song, Zhibin Cao. (2002).
 Coyote: An XML-Based Framework for Web Services
 Testing. IEEE, p1-10.
[32] Harry M. Sneed. (2006). WSDLTest – A Tool for Testing
 Web Services.IEEE, p.20-30.
[33] Reiko Heckel,Marc Lohmann. (2005). Towards Contract-
 based Testing of Web Services. Elsevier. 116, p1-10.
[34] Xiaoying Bai and Shufang Lee,Wei-Tek Tsai and Yinong
 Chen. (2008). Ontology-Based Test Modeling and Parti
 tion Testing of Web Services.IEEE, p271-280.
[35] Hong Zhu. (2006). A Framework for Service-Oriented
 Testing of Web Services. IEEE, p1-10.
[36] Lourival F. de Almeida Júnior and Silvia R. Vergilio.
 (2006). Exploring Perturbation Based Testing for Web
 Services. IEEE, p1-9.
[37] Li Li, Wu Chou, Weiping Guo. (2008). Control Flow
 Analysis and Coverage Driven Testing for Web Servic
 es. IEEE, p271-280.
[38] Eyhab Al-Masri and Qusay H. Mahmoud. (2008). Inves
 tigating Web Services on the World Wide Web. WWW
 2008 / Refereed Track: Web Engineering - Web Service Dep
 loyment, p.20-30.
[39] Gerardo Morales, Stephane Maag, Ana Cavalli. (2010
 Services . IEEE, p.20-30.
[40] Daniel Brenner, Colin Atkinson, Oliver Hummel, Diet
 mar Stoll. (2007). Strategies for the Run-Time Testing of
 Third Party Web Services. IEEE, p271-280.
[41] Xianrong Zheng,Yuhong Yan. (2008). An Efficient Syn
 tacticWeb Service Composition Algorithm Based on the
 Planning Graph Model. IEEE, p.1370-1381.
[42] Mounir Lallali , Fatiha Zaidi , Ana Cavalli , Iksoon
 Hwang. (2008). Automatic Timed Test Case Generation

 forWeb Services Composition.IEEE, p1-10.
[43] Zibin Zheng, Hao Ma, Michael R. Lyu, Irwin King,Shatin,
 N.T.,and Hong Kong . (2009). WSRec: A Colla
 borative Filtering Based Web Service Recom
 mender System. IEEE, p1-8.
[44] Senthilanand Chandrasekaran , John A. Miller ,
 Gregory S. Silver , Budak Arpinar & Amit P. Sheth.
 (2010). Performance Analysis and Simulation of Compo
 site Web Services. IEEE, p1-14.
[45] Jan Hendrik Hausmann, Reiko Heckel,and Marc Loh
 mann . (2004). Model-based Discovery of Web Services.
 IEEE, p1-8.
[46] Nuno Antunes,and Marco Vieira . (2011). Enhancing Pe
 netration Testing with Attack Signatures and Interface
 Monitoring for the Detection of Injection Vulnerabilities
 in Web Services . IEEE, p1-8.
[47] W.T. Tsai, Bingnan Xiao, Raymond A. Paul ,and Yinong
 Chen . (2006). Consumer-Centric Service-Oriented Archi
 tecture: A New Approach . IEEE, p1-6.
[48] Kevin M. Conroy, Mark Grechanik, Matthew Hellige,
 Edy S. Liongosari, and Qing Xie . (2010). AutomaticTest
 GenerationFromGUIApplicationsForTestingWebServic
 es.IEEE, p1-10.
[49] Christian Platzer and Schahram Dustdar . (2005). A Vec
 tor Space Search Engine for Web Services. IEEE, p1-9.
 [50] Lian Yu, Wei-Tek Tsai1, Xiangji Chen, Linqing Liu, Yan
 Zhao, Liangjie Tang,and Wei Zhao2 . (2010). Testing as a
 Service over Cloud . IEEE, p1-8.
[51] Ana Cavalli1, Tien-Dung Cao2, Wissam Mallouli3, Eliane
 Martins4, Andrey Sadovykh5, Sebastien Salva6,and Fati
 AdedicatedframeworkforthemodellingandtestingofWeb
 Services composition. IEEE, p1-8.
[52] Ke Zhai, Bo Jiang,W. K. Chan,and T. H. Tse. (2010). Tak
 ing Advantage of Service Selection: A Study on the Test
 ing of Location-Based Web Services through Test Case
 Prioritization . IEEE, p1-8.
[53] Dimitris Dranidis,Ervin Ramollari,and Dimitrios Kourte
 sis .(2009). Run-time Verification of Behavioural Con
 formance for Conversational Web Services . IEEE, p1-9.
[54] Tien-Dung Cao1, Patrick F´elix1, Richard Castanet1 and
 Ismail Berrada2 . (2009). TestingWebServicesComposi
 tionusingtheTGSETool. IEEE, p1-8.
[55] Satish Srirama, Eero Vainikko, Vladimir Šor,and Mat
 thias Jarke . (2010). Scalable Mobile Web Services Media
 tion Framework . IEEE, p1-6.
[56] Colin Atkinson, Philipp Bostan, Oliver Hummel and Di
 etmar Stoll . (2007). A Practical Approach to Web Service
 Discovery and Retrieval . IEEE, p1-8.
[57] Cesare Pautasso . (2005). JOpera: an Agile Environment
 for Web Service Composition with Visual Unit Testing
 and Refactoring. IEEE, p1-3.
[58] Mounir Lallali, Fatiha Zaidi,and Ana Cavalli . (2008)
 TimedModelingofWebServicesCompositionforAutoma
 ticTesting. IEEE, p1-10.
[59] Yan Li, Yao Liu, Liangjie Zhang, Ge Li, Bing Xie+, and
 Jiasu Sun . (2007). An Exploratory Study of Web Services
 on the Internet . IEEE, p1-8.
[60] Mark B. Cooray, James H. Hamlyn-Harris and Robert G.
 Merkel . (2015). Dynamic Test Reconfiguration for Com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 553
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 posite Web Services . IEEE, p1-13.

IJSER

http://www.ijser.org/

	1 Introduction

